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Only a decade ago, the concept of being able to simultaneously
measure the concentrations of every transcript in the cell in a
single experiment would have seemed like science fiction to
most researchers. However, the advent of new technologies has
empowered genome researchers to do just that, and has also
added new dimensions to our ability to leverage information
from genome sequencing projects into a more comprehensive
and holistic understanding of cell physiology. Despite the
excitement generated by these technologies, only a handful of
research laboratories (along with many pharmaceutical and
biotechnology companies) are currently carrying out genome-
scale expression studies. Certainly the high cost and technical
expertise required is an obstacle to many investigators who are
interested in pursuing such studies, leading some to use
updated versions of more traditional systems (for example, fil-
ters1,2) that may be more economical in terms of capital equip-
ment outlays, operating expenses and array and reagent costs.
Furthermore, the scientific community has not determined
how to cope with the massive amounts of data to be explored
and interpreted in the context of other sources of biological
knowledge. Lastly, there are no universal standards that define
how the results can be shared and distributed most effectively
within the scientific community.

The number of review articles on gene expression technolo-
gies probably exceeds the number of primary research publica-
tions in this field. This is not the result of any paucity of
primary data; for example, at Stanford and Rosetta alone, more
than 30 million independent gene expression measurements
(one gene, one condition) have been made during the past two
years. There are, however, a limited number of efficient, pub-
licly available tools for data processing, storing and retrieving
the information and analysing the results in the context of
existing knowledge. In addition, there is no consensus on how
to compare the results obtained using different technologies
(for example, microarrays3 versus oligonucleotide ‘chips’4 ver-
sus SAGE5) and how to communicate results using existing
publication modalities and public database systems6. In this
review, we will discuss some of the technical and intellectual
issues involved in these processes, describe some of the ways in
which they are currently being addressed and provide some
thoughts about future directions.

Processes and information flow 
Laborator y information management systems and
databases .  Large-scale, high-throughput experimental meth-
ods require material and information processing systems to
match (Fig. 1). In addition to being used to locate and track
physical resources (for example, clones, arrays or probes), com-
puter systems must manage very large quantities of data both
before and after an experiment. They may also need to interface
with laboratory instrumentation  for example, controlling
robotic ‘printing’ of microarrays (see pages 11 (ref. 7) and 16
(ref. 8) of this issue) and correlating array elements with specific
microtitre plates and wells. Following hybridization of a
microarray and the readout of gene expression levels, the data
must be stored so that they are available for image processing9

and statistical and biological analysis.
Image analysis .  A variety of software tools have been

developed for use in processing array images (Table 1). The basic
goal is to reduce an image of spots of varying intensities into a
table with a measure of the intensity (or, for multi-coloured fluo-
rescence images, the ratio of intensities) for each spot. Although
this is a relatively straightforward goal, there is as yet no common
manner of extracting this information, and many research
groups are still writing customized software for this purpose.
Scanning and image processing are currently resource-intensive
tasks, requiring human intervention to ensure that grids are
properly aligned and that artefacts are flagged and properly
excluded from subsequent analysis. Adoption of standard
input/output formats, automation of feature identification and
software identification of common artefacts are important goals
for the next generation of array analysis software. In addition,
routine quality assessment and the assignment of robust confi-
dence statistics on gene expression data are critical. This quality
assurance information should be transmitted with the primary
data through subsequent analyses and database submission, as is
done in X-ray crystallography and DNA sequence assembly10.

Data integrat ion.  Genomic information resources can be
highly synergistic, and public databases and tools such as Gen-
Bank, Entrez and BLAST provide biologists with integrated and
linked information. Clearly a GenBank-like public database of
gene expression measurements, integrated with MEDLINE,
Entrez and other data and tools, would be a useful resource for

Technologies for whole-genome RNA expression studies are becoming increasingly reliable and accessible.
However, universal standards to make the data more suitable for comparative analysis and for inter-operability
with other information resources have yet to emerge. Improved access to large electronic data sets, reliable and
consistent annotation and effective tools for ‘data mining’ are critical. Analysis methods that exploit large data
warehouses of gene expression experiments will be necessary to realize the full potential of this technology.
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the biological community. Although existing database technolo-
gies are capable of managing such a resource, there are serious
obstacles to establishing such a system. Fundamentally, what
would be the form of expression data that such a database would
store? The correlates of GenBank sequences or 3D atomic coordi-
nates in the Protein Data Bank are difficult to specify for expres-
sion studies, as absolute values are hard to define. Methods for
accurate, reliable normalization among multiple experiments
and technologies are not available, and all gene expression meth-
ods suffer from both intra- and inter-experimental variability,
making direct comparisons of raw intensity data between experi-
ments prone to significant error. One goal of a public gene
expression database would be to store data from diverse gene
expression analysis technologies in a standardized, inter-opera-
ble form. Expression measurements in transcript copies per cell,
or percentage of the total transcript pool, would be meaningful,
useful and inter-operable among various technologies. Unfortu-
nately, current hybridization technologies cannot measure these
numbers; instead, they accurately measure the relative abun-
dance of transcripts between two samples. Thus, conversion of
typical gene expression data into a universal format requires that
certain assumptions be made. If we assume that transcripts of
one or more (ubiquitously expressed) ‘housekeeping genes’ have
relatively stable, steady-state numbers, and if we assume that
there is a linear relationship between average fluorescence in-
tensities and transcript levels, the problem reduces quite nicely.

Of course, such assumptions distort the primary data and may be
unacceptable standards for a public gene expression database.
Multicolour experiments, wherein fluorophore-labelled cDNA
samples from each state being compared compete for binding to
tethered hybridization probes, can generate highly accurate rela-
tive expression levels, allowing experiments with a common
‘baseline’ sample to be readily normalized. However, the use of
standardized controls among laboratories employing a variety of
gene expression technologies is an impractical and unlikely solu-
tion. Normalization among gene expression studies performed
in multiple laboratories using varied technologies remains a dif-
ficult and pressing challenge to the establishment of a central,
public domain resource of gene expression information.

Data mining
With the introduction of sophisticated laboratory instrumenta-
tion, robotics and large, complex data sets, biomedical research is
increasingly becoming a cross-disciplinary endeavour requiring
the collaboration of biologists, engineers, software and database
designers, physicists and mathematicians. Techniques used in
other fields can be extremely valuable if we can learn their proper
applicability to biological problems. In this section, we describe
data storage and analysis methods and requirements for gene
expression studies, examine some approaches to ‘data mining’
drawn from other fields and consider how they might be applied
for hypothesis testing and knowledge discovery.

Data analysis and interpretation
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Fig. 1 Overview of the information system for large-scale gene
expression experiments. It has previously been suggested that the
most powerful and flexible design is that of a database-backed
web site6, although a number of groups are also developing self-
contained or turnkey systems that run on dedicated workstations.
Specialized software that addresses only a subset of the informat-
ics requirements is also becoming available (Table 1). Laboratory
information management systems (LIMS) must track both mater-
ial and information flow throughout the experimental process as
well as subsequent data processing steps. Critical information
includes details on a target’s physical and biological characteris-
tics, that is, representing the hypothesis that an experiment was
designed to test in the first place. Such information should be
entered at the outset of an experiment, so that any results
obtained may be easily linked back to starting hypothesis and
materials. At the analysis and interpretation stage, standard
analyses (for example, clustering) should be provided, along with
results summaries that ideally would incorporate relevant infor-
mation from external resources in an automatic or semi-auto-
matic fashion. Lastly, because not all analytic needs and methods
can be anticipated, it is important that the data can be easily
downloaded from the database for importing into other applica-
tions such as existing statistical analysis packages or new pro-
grams and algorithms.

Table 1 • Resources

Image Analysis

BioDiscovery http://www.biodiscovery.com/software.html BioDiscovery’s ImaGene Image Analysis Software

ScanAlyze http://bronzino.stanford.edu/ScanAlyze Brown Lab’s Image Analysis software

Microarray Data Warehousing & Analysis

Affymetrix http://www.affymetrix.com/products/lims/lims.html GeneChip LIMS data warehouse 

Brown Lab, Stanford University http://cmgm.stanford.edu/pbrown/explore/ Searchable database of published yeast microarray data

MicroArray Project, NIH http://www.nhgri.nih.gov/DIR/LCG/15K/HTML/dbase.html Database schema and software tools for analysis of
high-throughput gene expression data

Rosetta Inpharmatics http://www.rosetta.org/ Resolver data warehouse & analysis software

Silicon Genetics http://www.sigenetics.com/GeneSpring/Overview.htm GeneSpring data warehouse & analysis software
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Data warehousing.  Of central importance to the optimal
utilitization of gene expression data is the development of some
type of unified infrastructure for collecting, storing, retrieving
and querying data, regardless of the technology used to generate
it. The most significant contribution of gene expression arrays
to our understanding of biological pathways and processes will
derive not from the analysis of single experiments, but from
libraries of experiments. Just as GenBank serves as an ever-
improving classification space for each new gene and genome
sequenced, gene expression analyses will benefit immensely
from comparison and classification. The existence of such a
resource for gene expression information would serve as a cata-
lyst for the development of new and powerful tools that take
advantage of large ensembles of these data.

The first step is to construct a database or ‘data warehouse’. To
cite a description of requirements drawn from other fields, “Data
in the warehouse have already been cleaned and verified. Data
from multiple sources have been integrated. A single data model
ensures that similarly named fields have the same meaning
throughout the database”11. Although these goals have largely
been achieved for sequence, structure and bibliographic data in
Entrez and its underlying ASN.1 data model12, much work needs
to be done to achieve similar results for gene expression data.

Errors and confidence levels of individual measurements are,
in general, poorly understood. Most laboratories still base confi-
dence levels on the magnitude of the ratios—typically deeming
measurements with at least a two- or threefold deviation from a
given intensity threshold ‘significant’. This is a far-from-ideal
standard, however, because high-intensity spots and/or those
with highly reproducible ratios across multiple experiments are
much more reliable than dim spots or those that display signifi-
cant scatter across experimental repeats. As the quality of gene
expression data can vary widely among experiments, reliable sta-

tistics for each expression measurement will be a necessity for a
public repository of gene expression data.

In addition to variation among individual measurements in a
single experiment, there are also variations or artefacts that can
arise from the starting materials used for sample (or target)
preparation (see page 38 of this issue (ref. 14)) that may make it
difficult to compare even repetitions of the same experiment. 

To stimulate discussion, we would like to propose a ‘straw man
standard’ for annotated and normalized gene expression data in
a public database. We suggest that the essential information
could be represented in five categories:

Contact information: identifies the laboratory or investigator
who submitted the data.

Hybridization targets: for each ‘spot’ on an array, there should
be a public database identifier15 for the DNA sequence present.
For oligonucleotide arrays, the oligonucleotide sequences should
identify a range in a reference sequence in a public database (for
example, GenBank). For cDNA arrays, an additional clone iden-
tifier (such as an IMAGE clone_id) would be given. (Note that
taxonomic information on the species from which the DNA tar-
get is derived could be accessed from the GenBank records.)

Target(s): (i) details of the cell types and/or tissues of origin
using a controlled vocabulary. For mammalian tissues, histologic
and histopathologic terms routinely used in diagnostic pathol-
ogy could be employed. Standard terms for developmental stages
in embryogenesis and organogenesis could also be used, depend-
ing on the experiment. (ii) Taxonomic names of the species of
origin of the target (for example, Saccharomyces cerevisiae, Homo
sapiens) should be provided. For some organisms such as rodents
and microorganisms, strain information would also be identi-
fied. (iii) Information on the biological ‘states’ examined in the
experiment, for example, drug-treated or untreated is crucial.
Presumably, ‘tumour versus normal’ or separate developmental

Fig. 2 Clustering high-throughput gene expression data can shed new light on biological pathways and processes. a, clustering tree representing results from
3800 genes from the budding yeast S. cerevisiae which showed one or more significant gene expression changes across 365 experiments involving various genetic
perturbations, drug treatments, and growth conditions. b, A portion of this tree, highlighted in red, has been expanded. This branch contains a number of genes
invoved in the yeast mating pathway, inluding yeast ‘sterile’ (STE) genes idenified in screens for mutants unable to undergo mating (STE2, STE4, STE6, STE12), the
yeast a-factor mating pheromone precursor (MFA2), a gene involved in desensitization to mating pheromone (SST2), and other genes known to play a role in the
yeast mating process (FAR1, FUS1, FUS3). Function-unknown open reading frames identified by genomic sequencing efforts are idenified which are co-regulated
with these genes (YFL027C, YDR309C, YNL078W) and may play a role in the mating pathway. As with genes, microarray experiments can also be clustered to
expose conditions, drug treatments, and genetic perturbations that yield similar expression profiles.

a b
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stages would be captured as in (i). (iv) The genetic background
or genotype of the cell or organism would also be important in
certain cases; yeast gene deletions and transgenic mice are obvi-
ous examples. Lastly, due to potential problems of reproducibil-
ity on the basis of variations in tissue handling, detailed
information on the protocols should be provided.

mRNA transcript quantitation: for hybridization-based meth-
ods, level of induction or repression could be represented by
increased or decreased intensity levels compared with an inter-
nal, universal control, perhaps on the basis of a set of empirically
defined ‘housekeeping’ genes. The equivalent of fluorescence or
radiation intensity measurements for the transcript tag-counting
methods would be the number of observations of each gene tag.
It does not seem any more practical to provide raw data for gene
expression measurements than to supply the chromatograms or
‘traces’ underlying DNA sequence data (however, even these lat-
ter data currently lack a quality measure or confidence value for
each base).

Statistical significance: some type of value expressing the confi-
dence of the expression level changes described in the previous
category is required. Ideally, it will be economically feasible to
repeat an experiment a sufficient number of times so that the
variance associated with each transcript level can be given.

The information in the first two categories is relatively straight-
forward to obtain and attach to expression records. The third cat-
egory is more difficult because the information is more complex
and there would need to be agreement on certain standards. How-
ever, none of these data attributes are unique to expression stud-
ies, and most problems have been successfully dealt with by the
public sequence databases16 or by more specialized resources17,18.
The most challenging aspects of presenting gene expression data
are represented by the last two categories.

Data explorat ion.  The greatest intellectual challenge in
using these new technologies is devising ways in which to extract
the full meaning and implications of the data stored in large gene
expression libraries. As expression databases grow, more sophisti-
cated and user-friendly methods of analysis will be required.
‘Data mining’ has been defined as “the exploration and analysis,
by automatic or semi-automatic means, of large quantities of data
in order to discover meaningful patterns and rules”11. In biology,
‘mining’ of sequence databases has, of course, been going on for
two decades and has reached a powerful new level in comparative
genomics applications19,20. Indeed, there are some analogies
between sequence similarity search technology and pattern recog-
nition in gene expression arrays. The ultimate goal is to convert
data into information and then information into knowledge.

There are two general approaches to data mining in large-scale
expression analysis  hypothesis testing and knowledge discov-
ery. Hypothesis testing is a ‘top down’ approach in which induc-
tion or perturbation of a biological process will lead to predicted
results, although often also revealing new phenomena. Knowl-
edge discovery by exploratory data analysis is a ‘bottom up’
approach in which the data are allowed to ‘speak for themselves’
after a statistical or visualization procedure is performed (see
page 33 of this issue (ref. 21)).

Integrat ion w ith other  databases .  In both cases, suc-
cessful interpretation will rely on integrating experimental data
with external information resources, such as those encompassed
by NCBI’s Entrez system22,23. Genes on arrays have been linked
to the Entrez ‘information space’6, but this implementation is
still very much a one-gene-at-a-time approach that needs to be
streamlined by preprocessing the results of an experiment or
series of experiments to produce an ‘executive summary’. The
idea is to employ a software agent to explore different Entrez
nodes and to select the ‘most important’ records by user-defined

or default criteria and then to summarize these results in a con-
densed overview of the findings relevant to genes that are upreg-
ulated or downregulated (or both). For example, one may only
want to retrieve from MEDLINE review articles that were pub-
lished more recently than a certain date, or only articles that
include the term ‘drug metabolism’ in their titles, abstracts or
MeSH headings. Or perhaps one would also want only those
records for which 3D structures of the gene products were
known or cases in which the genes have been mapped. Imple-
mentations of such strategies are clearly within the capabilities
of existing data models and software tool kits12 and are under
development. Even more desirable would be a program that
would be capable of suggesting possible explanations or
hypotheses implied by the ensemble of information assembled
by such a process.

Tools for exploring gene expression databases are in their
infancy. In some cases, it is possible to understand what expres-
sion data are telling us about changing states of the organism by
correlating transcriptional activity with known processes and
pathways24–28. It is important to remember, however, that for
even the best characterized organisms, functional information is
usually incomplete and exists for only a fraction of the genes, and
even less is known about the manner in which expression of these
genes is regulated. Furthermore, electronic databases of pathway
information29 are currently limited in scope, computability, or
both. A major focus of infrastructure development to support
large-scale gene expression studies will be in the area of elec-
tronic biological pathway databases and resources.

Stat ist ical  analysis .  Statistical methods can be applied to
detect and extract internal structure in the data. It is a funda-
mental assumption of many gene expression studies that knowl-
edge of where and when a gene is expressed carries important
information about what the gene does; therefore, an obvious
first step is to organize genes on the basis of similarities in their
expression profiles. The idea of clustering genes on the basis of
their expression patterns is well established (for example, the
identification of gene expression at various points in the cell
cycle) and has been applied to expression studies30–32. However,
only recently have data become available to test the utility of this
approach on a genomic scale (ref. 33; Fig. 2).

Although cluster analysis34 has been the most widely used sta-
tistical technique applied to large-scale gene expression data, it is
only one of several techniques that have been applied to data
mining11. Others include affinity grouping or market basket
analysis, memory-based reasoning, link analysis, decision trees
and rule induction, self-organizing maps and other types of
neural networks and genetic algorithms. Undoubtedly these
other techniques will prove useful in gene expression analysis,
particularly once standards in data exchange and confidence sta-
tistics are adopted.

Visual izat ion.  Another important component of genome-
wide expression data exploration is the development of powerful
data visualization methods and tools. Approaches have been
developed that present clustering results in simple graphical dis-
plays to produce snapshots or overviews of large expression data
sets that ‘image’ a transcriptional response without distorting the
primary data33. Such visualization techniques, combined with
integrated links to annotated sequence databases, provide very
valuable tools that allow biologists to examine large expression
data sets and develop new insights into and models of genome-
wide transcriptional regulation. In other fields, such procedures
are sometimes referred to as on-line analytic processing (OLAP),
which is a data presentation methodology enabling efficient,
manual knowledge discovery that depends on human intelli-
gence and pattern recognition11.
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Perspectives
The overall transcriptional response of a cell to a given growth
condition, drug treatment, or genetic perturbation is not unlike
the sequence of a gene in some respects. Expression profiles can be
‘aligned’ with one another to identify similar cellular responses.
As with global versus local sequence alignments, the entirety of an
expression profile will not be important for some analyses and, in
some cases, could even muddle or confuse a result. It will be
important for us to begin to delve into the ‘subsignatures’ on array
profiles that are the correlates of domains or motifs in protein
sequence analysis. The analogue to multiple sequence alignment
is statistical cluster analysis, which is being applied to gene expres-
sion data to an increasing degree. Cluster analysis of results from
multiple experiments to identify genes that behave similarly can
be used to identify co-regulated genes, and thereby reveal regula-
tory elements, transcription factors and even previously undis-
covered players in a cellular pathway or process. On another level,
clustering allows the grouping of growth conditions, mutations
and drugs that elicit similar transcriptional responses in different
experiments. Similar to sequence analysis a decade ago, the analy-
sis of high-throughput gene expression data is in an early stage of

development. With dominant technologies emerging for gene
expression array construction and scanning, data analysis and
integration techniques and tools will no doubt be the primary
research focus in the future.

Despite the rather early stage of development of large-scale gene
expression monitoring systems and methods, this new technology
has already proven exceptionally useful in expanding our knowl-
edge of even well-understood aspects of cellular biology. Studies
on the mitotic cell cycle24,35 and sporulation25 in yeast and the
serum response in human cells36 reveal rich and coherent informa-
tion contained in the expression patterns of genes. The use of
whole-genome transcript analysis also has great potential for iden-
tifying cis-regulatory elements controlling expression networks27,
and for drug target validation and the identification of secondary
drug target effects37. We look forward with excitement and confi-
dence to the future of genome-wide expression experiments.
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